Reasoning with DAML+OIL:
What can it do for YOU?

Ian Horrocks
horrocks@cs.man.ac.uk

University of Manchester
Manchester, UK
DAML+OIL Language Overview

DAML+OIL is an **ontology** language
DAML+OIL Language Overview

DAML+OIL is an ontology language

- Describes structure of the domain (i.e., a schema)
 - RDF used to describe specific instance of domain (data)
DAML+OIL Language Overview

DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a schema)
 ● RDF used to describe specific instance of domain (data)
☞ Structure described in terms of classes and properties
DAML+OIL Language Overview

DAML+OIL is an **ontology** language

☞ Describes **structure** of the domain (i.e., a schema)
 - RDF used to describe specific **instance** of domain (data)

☞ Structure described in terms of **classes** and **properties**

☞ Ontology consists of set of **axioms**
 - E.g., asserting class subsumption/equivalence
DAML+OIL is an ontology language

☞ Describes structure of the domain (i.e., a schema)
 ● RDF used to describe specific instance of domain (data)
☞ Structure described in terms of classes and properties
☞ Ontology consists of set of axioms
 ● E.g., asserting class subsumption/equivalence
☞ Classes can be names or expressions
 ● Various constructors provided for building class expressions
DAML+OIL Language Overview

DAML+OIL is an **ontology** language

☞ Describes **structure** of the domain (i.e., a schema)
 - RDF used to describe specific **instance** of domain (data)

☞ Structure described in terms of **classes** and **properties**

☞ Ontology consists of set of **axioms**
 - E.g., asserting class subsumption/equivalence

☞ Classes can be names or **expressions**
 - Various **constructors** provided for building class expressions

☞ **Expressive power** determined by
 - Kinds of axiom supported
 - Kinds of class (and property) constructor supported
DAML+OIL Class Constructors

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Abbreviation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>intersectionOf</td>
<td>$C_1 \land \ldots \land C_n$</td>
<td>Human \land Male</td>
</tr>
<tr>
<td>unionOf</td>
<td>$C_1 \lor \ldots \lor C_n$</td>
<td>Doctor \lor Lawyer</td>
</tr>
<tr>
<td>complementOf</td>
<td>$\neg C$</td>
<td>\neg Male</td>
</tr>
<tr>
<td>oneOf</td>
<td>${x_1 \ldots x_n}$</td>
<td>${john, mary}$</td>
</tr>
<tr>
<td>toClass</td>
<td>$\forall P.C$</td>
<td>\forall hasChild.Doctor</td>
</tr>
<tr>
<td>hasClass</td>
<td>$\exists P.C$</td>
<td>\exists hasChild.Lawyer</td>
</tr>
<tr>
<td>hasValue</td>
<td>$\exists P.{x}$</td>
<td>\exists citizenOf.{USA}</td>
</tr>
<tr>
<td>minCardinalityQ</td>
<td>$\geq n P.C$</td>
<td>≥ 2 hasChild.Lawyer</td>
</tr>
<tr>
<td>maxCardinalityQ</td>
<td>$\leq n P.C$</td>
<td>≤ 1 hasChild.Male</td>
</tr>
<tr>
<td>cardinalityQ</td>
<td>$= n P.C$</td>
<td>$= 1$ hasParent.Female</td>
</tr>
</tbody>
</table>

Arbitrarily complex nesting of constructors

E.g., 8 hasChild: $(\text{Doctor} _ 9 \text{hasChild:} \text{Doctor})$
DAML+OIL Class Constructors

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Abbreviation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>intersectionOf</td>
<td>$C_1 \land \ldots \land C_n$</td>
<td>Human \land Male</td>
</tr>
<tr>
<td>unionOf</td>
<td>$C_1 \lor \ldots \lor C_n$</td>
<td>Doctor \lor Lawyer</td>
</tr>
<tr>
<td>complementOf</td>
<td>$\neg C$</td>
<td>\neg Male</td>
</tr>
<tr>
<td>oneOf</td>
<td>${x_1 \ldots x_n}$</td>
<td>{john, mary}</td>
</tr>
<tr>
<td>toClass</td>
<td>$\forall P.C$</td>
<td>\forall hasChild.Doctor</td>
</tr>
<tr>
<td>hasClass</td>
<td>$\exists P.C$</td>
<td>\exists hasChild.Lawyer</td>
</tr>
<tr>
<td>hasValue</td>
<td>$\exists P.{x}$</td>
<td>\exists citizenOf.{USA}</td>
</tr>
<tr>
<td>minCardinalityQ</td>
<td>$\geq n P.C$</td>
<td>≥ 2 hasChild.Lawyer</td>
</tr>
<tr>
<td>maxCardinalityQ</td>
<td>$\leq n P.C$</td>
<td>≤ 1 hasChild.Male</td>
</tr>
<tr>
<td>cardinalityQ</td>
<td>$= n P.C$</td>
<td>$= 1$ hasParent.Female</td>
</tr>
</tbody>
</table>

- Arbitrarily complex nesting of constructors
 - E.g., \forall hasChild. (\lor Doctor \lor \exists hasChild.Doctor)
DAML+OIL Class Constructors

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Abbreviation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>intersectionOf</td>
<td>$C_1 \land \ldots \land C_n$</td>
<td>Human \land Male</td>
</tr>
<tr>
<td>unionOf</td>
<td>$C_1 \lor \ldots \lor C_n$</td>
<td>Doctor \lor Lawyer</td>
</tr>
<tr>
<td>complementOf</td>
<td>$\neg C$</td>
<td>\neg Male</td>
</tr>
<tr>
<td>oneOf</td>
<td>${x_1 \ldots x_n}$</td>
<td>{john, mary}</td>
</tr>
<tr>
<td>toClass</td>
<td>$\forall P.C$</td>
<td>\forall hasChild.Doctor</td>
</tr>
<tr>
<td>hasClass</td>
<td>$\exists P.C$</td>
<td>\exists hasChild.Lawyer</td>
</tr>
<tr>
<td>hasValue</td>
<td>$\exists P.{x}$</td>
<td>\exists citizenOf.{USA}</td>
</tr>
<tr>
<td>minCardinalityQ</td>
<td>$\geq n P.C$</td>
<td>≥ 2 hasChild.Lawyer</td>
</tr>
<tr>
<td>maxCardinalityQ</td>
<td>$\leq n P.C$</td>
<td>≤ 1 hasChild.Male</td>
</tr>
<tr>
<td>cardinalityQ</td>
<td>$= n P.C$</td>
<td>$= 1$ hasParent.Female</td>
</tr>
</tbody>
</table>

- Arbitrarily complex **nesting** of constructors
 - E.g., \forall hasChild.(Doctor \lor \exists hasChild.Doctor)
- XMLS **datatypes** as well as classes
DAML+OIL Axioms

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Abbreviation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>subClassOf</td>
<td>$C_1 \sqsubseteq C_2$</td>
<td>Human \sqsubseteq Animal \land Biped</td>
</tr>
<tr>
<td>sameClassAs</td>
<td>$C_1 \sqsupseteq C_2$</td>
<td>Man \sqsupseteq Human \land Male</td>
</tr>
<tr>
<td>subPropertyOf</td>
<td>$P_1 \sqsubseteq P_2$</td>
<td>hasDaughter \sqsubseteq hasChild</td>
</tr>
<tr>
<td>samePropertyAs</td>
<td>$P_1 \sqsupseteq P_2$</td>
<td>cost \sqsupseteq price</td>
</tr>
<tr>
<td>sameIndividualAs</td>
<td>$x_1 \equiv x_2$</td>
<td>President_Bush \equiv G_W_Bush</td>
</tr>
<tr>
<td>disjointWith</td>
<td>$C_1 \sqsubseteq \neg C_2$</td>
<td>Male $\sqsubseteq \neg$ Female</td>
</tr>
<tr>
<td>differentIndividualFrom</td>
<td>${x_1} \sqsubseteq \neg {x_2}$</td>
<td>${john} \sqsubseteq \neg {peter}$</td>
</tr>
<tr>
<td>inverseOf</td>
<td>$P_1 \sqsupseteq P_2^\perp$</td>
<td>hasChild \sqsupseteq hasParent \perp</td>
</tr>
<tr>
<td>transitiveProperty</td>
<td>$P^+ \sqsubseteq P$</td>
<td>ancestor$^+$ \sqsubseteq ancestor</td>
</tr>
<tr>
<td>uniqueProperty</td>
<td>Thing $\sqsubseteq \leq 1 P$</td>
<td>Thing $\sqsubseteq \leq 1$ hasMother</td>
</tr>
<tr>
<td>UnambiguousProperty</td>
<td>Thing $\sqsubseteq \leq 1 P^\perp$</td>
<td>Thing $\sqsubseteq \leq 1$ isMotherOf \perp</td>
</tr>
</tbody>
</table>
DAML+OIL Axioms

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Abbreviation</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>subClassOf</td>
<td>$C_1 \sqsubseteq C_2$</td>
<td>Human \sqsubseteq Animal \land Biped</td>
</tr>
<tr>
<td>sameClassAs</td>
<td>$C_1 \vdash C_2$</td>
<td>Man \vdash Human \land Male</td>
</tr>
<tr>
<td>subPropertyOf</td>
<td>$P_1 \sqsubseteq P_2$</td>
<td>hasDaughter \sqsubseteq hasChild</td>
</tr>
<tr>
<td>samePropertyAs</td>
<td>$P_1 \vdash P_2$</td>
<td>cost \vdash price</td>
</tr>
<tr>
<td>sameIndividualAs</td>
<td>$x_1 \equiv x_2$</td>
<td>President_Bush \equiv G_W_Bush</td>
</tr>
<tr>
<td>disjointWith</td>
<td>$C_1 \sqsubseteq \neg C_2$</td>
<td>Male $\sqsubseteq \neg$ Female</td>
</tr>
<tr>
<td>differentIndividualFrom</td>
<td>${x_1} \sqsubseteq \neg{x_2}$</td>
<td>{john} $\sqsubseteq \neg$ {peter}</td>
</tr>
<tr>
<td>inverseOf</td>
<td>$P_1 \vdash P_2^-$</td>
<td>hasChild \vdash hasParent$^-$</td>
</tr>
<tr>
<td>transitiveProperty</td>
<td>$P^+ \sqsubseteq P$</td>
<td>ancestor$^+$ \sqsubseteq ancestor</td>
</tr>
<tr>
<td>uniqueProperty</td>
<td>Thing $\sqsubseteq \leq P$</td>
<td>Thing $\sqsubseteq \leq$ hasMother</td>
</tr>
<tr>
<td>UnambiguousProperty</td>
<td>Thing $\sqsubseteq \leq P^-$</td>
<td>Thing $\sqsubseteq \leq$ isMotherOf$^-$</td>
</tr>
</tbody>
</table>

☞ **Axioms (mostly) reducible to subClass/PropertyOf**
Decidable Reasoning

Set of operators/axioms restricted so that reasoning is **decidable**
Decidable Reasoning

Set of operators/axioms restricted so that reasoning is **decidable**

☞ Significant point on tractability -v- expressiveness scale
Decidable Reasoning

Set of operators/axioms restricted so that reasoning is **decidable**

☞ Significant point on tractability -v- expressiveness scale

☞ Consistent with Semantic Web’s **layered architecture**
 - XML provides syntax transport layer
 - RDF provides basic ontological primitives
 - DAML+OIL provides (decidable) logical layer
 - Further layers (e.g., **rules**) will extend DAML+OIL
Decidable Reasoning

Set of operators/axioms restricted so that reasoning is **decidable**

☞ Significant point on tractability -v- expressiveness scale

☞ Consistent with Semantic Web’s **layered architecture**
 - XML provides syntax transport layer
 - RDF provides basic ontological primitives
 - DAML+OIL provides (decidable) logical layer
 - Further layers (e.g., **rules**) will extend DAML+OIL

☞ Facilitates provision of **reasoning services**
 - Known algorithms
 - Implemented systems
 - Evidence of **empirical tractability**
Why Reasoning Services?

Reasoning is important for:

- Ontology design
 - Check class consistency and (unexpected) implied relationships
 - Particularly important with large ontologies/multiple authors

- Ontology integration
 - Assert inter-ontology relationships
 - Reasoner computes integrated class hierarchy/consistency

- Ontology deployment
 - Determine if set of facts are consistent w.r.t. ontology
 - Determine if individuals are instances of ontology classes
 - No point in having semantics unless exploited by "agents"

"The Semantic Web needs a logic on top" (Henry Thompson)
Why Reasoning Services?

Reasoning is important for:

- **Ontology design**
 - Check class consistency and (unexpected) implied relationships
 - Particularly important with large ontologies/multiple authors
Why Reasoning Services?

Reasoning is important for:

☞ **Ontology design**
 - Check class consistency and (unexpected) implied relationships
 - Particularly important with large ontologies/multiple authors

☞ **Ontology integration**
 - Assert inter-ontology relationships
 - Reasoner computes integrated class hierarchy/consistency
Why Reasoning Services?

Reasoning is important for:

☞ **Ontology design**
 - Check class consistency and (unexpected) implied relationships
 - Particularly important with large ontologies/multiple authors

☞ **Ontology integration**
 - Assert inter-ontology relationships
 - Reasoner computes integrated class hierarchy/consistency

☞ **Ontology deployment**
 - Determine if set of facts are consistent w.r.t. ontology
 - Determine if individuals are instances of ontology classes
 - No point in having semantics unless exploited by “agents”
Why Reasoning Services?

Reasoning is important for:

☞ **Ontology design**
 - Check class consistency and (unexpected) implied relationships
 - Particularly important with large ontologies/multiple authors

☞ **Ontology integration**
 - Assert inter-ontology relationships
 - Reasoner computes integrated class hierarchy/consistency

☞ **Ontology deployment**
 - Determine if set of facts are consistent w.r.t. ontology
 - Determine if individuals are instances of ontology classes
 - No point in having semantics unless exploited by “agents”

“The Semantic Web needs a logic on top” (Henry Thompson)
OilEd is a DAML+OIL ontology editor with reasoning support.

OilEd has a frame-based interface (inspired by Protegé) and is extended to clarify semantics and capture the whole language. It supports explicit (hasClass) or (toClass) restrictions, Boolean connectives (\(\land\), \(\lor\)), and nesting. Transitive and unique (functional) properties are also supported.

Reasoning support is provided by the FaCT system. The ontology is translated into SHIQ DL and communicated with FaCT via a CORBA interface. It indicates inconsistencies and implicit subsumptions and can add axioms to make implicit subsumptions explicit.
OilEd

OilEd is a DAML+OIL ontology editor with reasoning support
☞ Frame based interface (inspired by Protegé)
OilEd is a DAML+OIL ontology editor with reasoning support

☞ Frame based interface (inspired by Protegé)
☞ Extended to clarify semantics and capture whole language
 • Explicit \(\exists \) (hasClass) or \(\forall \) (toClass) restrictions
 • Boolean connectives (\(\land, \lor, \neg \)) and nesting
 • Transitive and unique (functional) properties
OilEd

OilEd is a DAML+OIL ontology editor with reasoning support

☞ Frame based interface (inspired by Protegé)
☞ Extended to clarify semantics and capture whole language
 - Explicit \exists (hasClass) or \forall (toClass) restrictions
 - Boolean connectives (\land, \lor, \neg) and nesting
 - Transitive and unique (functional) properties
☞ Reasoning support provided by FaCT system
 - Ontology translated into SHIQC DL
 - Communicates with FaCT via CORBA interface
 - Indicates inconsistencies and implicit subsumptions
 - Can add axioms to make implicit subsumptions explicit
Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

Transitive roles capture partonomy, causality, etc.

Smoking \rightarrow Cancer \rightarrow Death

Smoking \rightarrow Death

Multiple equality/inclusion axioms

Stomach-Ulcer $= Ulcer \land hasLocation: Stomach$

Stomach-Ulcer $\rightarrow hasLocation: Lining-Of-Stomach$

Inverse roles capture e.g. causes/causedBy relationship

Death $\rightarrow causedBy: Smoking \land PrematureDeath$

Smoking $\rightarrow PrematureDeath$

Cardinality restrictions add consistency constraints

BloodPressure $\rightarrow hasValue: (High _ Low) \land hasValue: HighLowBloodPressure$

DAML PI meeting, Nashua, July 2001 – p.8/9
Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology
☞ Transitive roles capture partonomy, causality, etc.
Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.

Smoking $\subseteq \exists$ causes.Cancer plus Cancer $\subseteq \exists$ causes.Death

⇒ Smoking $\subseteq \exists$ causes.Death
Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.

 Smoking $\sqsubseteq \exists$causes.Cancer plus Cancer $\sqsubseteq \exists$causes.Death

 \Rightarrow Smoking $\sqsubseteq \exists$causes.Death

☞ Multiple equality/inclusion axioms
Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.

- Smoking $\sqsubseteq \exists$causes.Cancer plus Cancer $\sqsubseteq \exists$causes.Death
 \implies Smoking $\sqsubseteq \exists$causes.Death

☞ Multiple equality/inclusion axioms

- Stomach-Ulcer \equiv Ulcer $\land \exists$hasLocation.Stomach plus
 Stomach-Ulcer $\sqsubseteq \exists$hasLocation.Lining-Of-Stomach
 \implies Ulcer $\land \exists$hasLocation.Stomach \sqsubseteq OrganLiningLesion
Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.
 Smoking $\subseteq \exists$causes.Cancer plus Cancer $\subseteq \exists$causes.Death
 \Rightarrow Smoking $\subseteq \exists$causes.Death

☞ Multiple equality/inclusion axioms
 Stomach-Ulcer $\not\equiv$ Ulcer $\land \exists$hasLocation.Stomach plus
 Stomach-Ulcer $\subseteq \exists$hasLocation.Lining-Of-Stomach
 \Rightarrow Ulcer $\land \exists$hasLocation.Stomach \subseteq OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship
Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.

Smoking $\sqsubseteq\exists$causes.Cancer plus Cancer $\sqsubseteq\exists$causes.Death

\Rightarrow Smoking $\sqsubseteq\exists$causes.Death

☞ Multiple equality/inclusion axioms

Stomach-Ulcer \doteq Ulcer $\land\exists$hasLocation.Stomach plus

Stomach-Ulcer $\sqsubseteq\exists$hasLocation.Lining-Of-Stomach

\Rightarrow Ulcer $\land\exists$hasLocation.Stomach \sqsubseteq OrganLiningLesion

☞ Inverse roles capture e.g. causes/causedBy relationship

Death $\land\exists$causedBy.Smoking \sqsubseteq PrematureDeath

\Rightarrow Smoking $\sqsubseteq\exists$causes.PrematureDeath
Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

- Transitive roles capture partonomy, causality, etc.

 Smoking $\subseteq \exists$causes.Cancer plus Cancer $\subseteq \exists$causes.Death

 \Rightarrow Smoking $\subseteq \exists$causes.Death

- Multiple equality/inclusion axioms

 Stomach-Ulcer \doteq Ulcer $\land \exists$hasLocation.Stomach plus

 Stomach-Ulcer $\subseteq \exists$hasLocation.Lining-Of-Stomach

 \Rightarrow Ulcer $\land \exists$hasLocation.Stomach \subseteq OrganLiningLesion

- Inverse roles capture e.g. causes/causedBy relationship

 Death $\land \exists$causedBy.Smoking \subseteq PrematureDeath

 \Rightarrow Smoking $\subseteq \exists$causes.PrematureDeath

- Cardinality restrictions add consistency constraints
Reasoning Examples — what you CAN do

E.g., DAML+OIL medical terminology ontology

☞ Transitive roles capture partonomy, causality, etc.
 Smoking $\subseteq \exists\text{causes.Cancer}$ plus Cancer $\subseteq \exists\text{causes.Death}$
 \Rightarrow Smoking $\subseteq \exists\text{causes.Death}$

☞ Multiple equality/inclusion axioms
 Stomach-Ulcer \cong Ulcer $\land \exists\text{hasLocation.Stomach}$ plus
 Stomach-Ulcer $\subseteq \exists\text{hasLocation.Lining-Of-Stomach}$
 \Rightarrow Ulcer $\land \exists\text{hasLocation.Stomach} \subseteq \text{OrganLiningLesion}$

☞ Inverse roles capture e.g. causes/causedBy relationship
 Death $\land \exists\text{causedBy.Smoking} \subseteq \text{PrematureDeath}$
 \Rightarrow Smoking $\subseteq \exists\text{causes.PrematureDeath}$

☞ Cardinality restrictions add consistency constraints
 BloodPressure $\subseteq \exists\text{hasValue.}(\text{High} \lor \text{Low}) \land \leq 1\text{hasValue}$ plus
 High $\subseteq \neg \text{Low} \Rightarrow$ HighLowBloodPressure $\subseteq \bot$
Reasoning Examples — what you CAN’T do

Where to begin!
Reasoning Examples — what you CAN’T do

Where to begin!

☞ Robust decidability largely due to tree model property
 ● For any consistent class there exists a tree (like) model
Reasoning Examples — what you CAN’T do

Where to begin!

☞ Robust decidability largely due to tree model property
 ● For any consistent class there exists a tree (like) model

☞ No property constructors, e.g.:
 ● parent ◦ brother ⊒ uncle
 ● ancestor ⊏ parent⁺

Language extensions may remove some of above limitations

☞ But there is no such thing as a free lunch
Reasoning Examples — what you CAN’T do

Where to begin!

☞ Robust decidability largely due to tree model property
 ● For any consistent class there exists a tree (like) model

☞ No property constructors, e.g.:
 ● parent ◦ brother ⊑ uncle
 ● ancestor ⊏ parent^+

☞ No variables, e.g.:
 ● Ulcer ∧ ∃hasLocation.?x ⊑ ∃hasLocation.(∃LiningOf.?x)
Reasoning Examples — what you CAN’T do

Where to begin!

☞ Robust decidability largely due to **tree model property**
 - For any consistent class there exists a tree (like) model

☞ No **property constructors**, e.g.:
 - parent \(\circ\) brother \(\subseteq\) uncle
 - ancestor \(\triangleleft\) parent \(\uparrow\)

☞ No **variables**, e.g.:
 - Ulcer \(\land\) \(\exists\)hasLocation.\(?x \subseteq\) \(\exists\)hasLocation.(\(\exists\)LiningOf.\(?x\))

☞ Only have **unary and binary predicates**
 - Can’t express (directly) \(P(x, y, z)\)
Reasoning Examples — what you CAN’T do

Where to begin!

☞ Robust decidability largely due to **tree model property**
 - For any consistent class there exists a tree (like) model

☞ No **property constructors**, e.g.:
 - parent ∘ brother ⊆ uncle
 - ancestor ⊳ parent

☞ No **variables**, e.g.:
 - Ulcer ∧ ∃hasLocation.?x ⊆ ∃hasLocation.(∃LiningOf.?x)

☞ Only have **unary and binary predicates**
 - Can’t express (directly) $P(x, y, z)$

Language extensions may remove some of above limitations
Reasoning Examples — what you CAN’T do

Where to begin!

☞ Robust decidability largely due to **tree model property**
 - For any consistent class there exists a tree (like) model

☞ No **property constructors**, e.g.:
 - parent ◦ brother ⊆ uncle
 - ancestor ⊄ parent

☞ No **variables**, e.g.:
 - Ulcer ∧ ∃hasLocation.?x ⊆ ∃hasLocation.(∃LiningOf.?x)

☞ Only have **unary and binary predicates**
 - Can’t express (directly) \(P(x, y, z) \)

Language extensions may remove some of above limitations

☞ But there is **no such thing as a free lunch**